English
新闻公告
More
化学进展 2024, Vol. 36 Issue (3): 297-318 DOI: 10.7536/PC230728 前一篇   后一篇

• 综述 •

不饱和醛选择性加氢高效催化剂的研究

杨星月, 周石杰, 杨宇森*(), 卫敏   

  1. 北京化工大学化学学院 化工资源有效利用国家重点实验室 北京 100029
  • 收稿日期:2023-07-31 修回日期:2023-09-27 出版日期:2024-03-24 发布日期:2024-02-26
  • 作者简介:

    杨宇森 博士,副教授,硕士生导师。于北京化工大学获得博士学位,师从卫敏教授。2019年至今于北京化工大学化工资源有效利用国家重点实验室从事多相催化研究, 主要研究方向: 氢气的清洁制取、安全储存与高效利用。已发表SCI研究论文60余篇。近5年,在Nat. Commun.J. Am. Chem. Soc.Adv. Sci.ACS Catal.Chem Catal.Appl. Catal. BJ. Catal.等期刊发表学术论文48篇,参与编写专著1部,授权国家发明专利5项,获中国石油和化学工业联合会科技进步二等奖1项(排名第4,2022年)。

  • 基金资助:
    国家重点研发计划(2021YFC2103500); 国家自然科学基金(22172006); 国家自然科学基金(22102006); 国家自然科学基金(22288102)

Efficient Catalysts for the Selective Hydrogenation of Unsaturated Aldehydes

Xingyue Yang, Shijie Zhou, Yusen Yang(), Min Wei   

  1. State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2023-07-31 Revised:2023-09-27 Online:2024-03-24 Published:2024-02-26
  • Contact: * e-mail: yangyusen@mail.buct.edu.cn
  • Supported by:
    National Key Research and Development Program(2021YFC2103500); National Natural Science Foundation of China(22172006); National Natural Science Foundation of China(22102006); National Natural Science Foundation of China(22288102)

不饱和醛的选择性加氢作为一类重要的精细化学品加工转化过程,在香精香料、药物食品生产、农产品加工等领域具有广泛应用。但是目前所应用催化剂的反应活性仍有待提高,需对催化剂进行进一步调控。本文总结了提高催化剂加氢选择性的三种策略,包括:改变金属活性位点的电子性质、增强金属活性位点与亲电位点之间的协同作用和利用结构效应来改变催化剂对于C=O键或C=C键的吸附能力和加氢活性。概括了氢源种类、反应溶剂、反应温度和氢气压力等反应条件对催化性能的影响。并归纳了不饱和醛选择性加氢有关的密度泛函理论计算、反应的动力学模型及反应中的构效关系。最后,讨论了不饱和醛选择性加氢催化剂面临的问题和挑战,并提出了可行的解决方案。

The selective hydrogenation of unsaturated aldehydes is an important process of fine chemical processing that is widely used in the fields of flavor, medicine and food production, agricultural product processing, and so on. However, the hydrogenation reactivity of current catalysts still needs to be improved and further modulation of catalyst structures is needed. Three design strategies for the selective hydrogenation catalysts are summarized in this paper, modifying the electronic properties of metal active sites, enhancing the synergistic effect between the metal active sites and the electrophilic sites, and utilizing the structural effect to change the adsorption strength and hydrogenation activity of C=O bond or C=C bond. The influences of hydrogen source types, reaction solvents, temperatures and hydrogen pressures on catalytic performance are also summarized. The density functional theory (DFT) calculation, the reaction kinetic model, and the structure-activity relationship of catalysts related to the selective hydrogenation of unsaturated aldehydes are summarized. In the final section, problems, and challenges in the selective hydrogenation of unsaturated aldehydes are discussed, and some feasible solutions are further proposed.

Contents

1 Introduction

2 Design strategy of catalysts

2.1 Modifying electronic properties of metal active sites

2.2 Enhancing the synergistic effect between the metal active sites and the electrophilic sites

2.3 Utilizing the structural effect

3 The influence of reaction conditions on the catalytic performance

3.1 Hydrogen source types

3.2 Reaction solvents

3.3 Reaction temperatures

3.4 Hydrogen pressures

4 The density functional theory calculation

5 Kinetic study of the hydrogenation of unsaturated Aldehydes

6 The hydrogenation mechanism of unsaturated aldehydes

7 Conclusion and outlook

()
图1 不饱和醛选择性加氢的反应路径
Fig. 1 Reaction routes of selective hydrogenation of unsaturated aldehyde
图2 丙烯醛的吸附模式:(a) 通过顶部羰基O的η1-模式。(b) 通过C=C或C=O键的η2-模式。(c) 通过C=C键和羰基O以及末端羰基氧的η3-模式。(d) 涉及所有主链原子的η4-模式
Fig. 2 Adsorption modes of acrolein: (a) η1-mode (atop) via the carbonyl O. (b) η2-modes via either the C=C or the C=O bond. (c) η3-mode via the C=C bond and the carbonyl O, as well as a metallocycle via the terminal atoms. (d) η4-modes involving all backbone atoms
图3 (a) 不同以碳材料作为载体的催化剂:(a) 不同石墨化程度的碳纳米片[10],(b) 三维分级多孔碳骨架[11], (c) 单分散的氮掺杂空心碳球[12], (d) 三维N掺杂蜂窝状多孔碳[13]负载Pt所制备的催化剂
Fig. 3 Different catalysts using carbon materials as support: (a) carbon nanosheets with different degrees of graphitization[10] (Copyright 2016, Royal Society of Chemistry) (b) Three dimensional hierarchical porous carbon skeleton[11] (Copyright 2018, Wiley-VCH Verlag Gmbh), (c) monodisperse nitrogen doped hollow carbon spheres[12] (Copyright 2016, Elsevier), (d) three-dimensional N-doped honeycomb porous carbon[13] (Copyright 2022, Elsevier BV) supported Pt catalysts
图4 添加第二类金属制备催化剂:(a) 添加Fe[30], (b) Co[32], (c) Sn[33], (d) Ga[34]制备Pt基高效催化剂
Fig. 4 Adding the second kind of metal to prepare the catalyst: (a) adding Fe[30] (Copyright 2018, Elsevier Science), (b) adding Co[32] (Copyright 2018, Elsevier Science), (c) adding Sn[33] (Copyright 2020, Elsevier), (d) adding Ga[34] (Copyright 2020, Elsevier Science) to prepare the Pt-based high efficiency catalyst
图5 在Pt13/CeO2(111)的金属-载体界面处,巴豆醛中C=O键优先吸附[9]
Fig. 5 Preferential adsorption of C=O bond in crotonaldehyde at metal-carrier interface of Pt13/CeO2(111)[9]. (Copyright 202020, American Chemical Society)
图6 将金属纳米粒子封装到(a) UiO-66的分层缺陷金属有机骨架[91], (b) 沸石骨架-1[92], (c) 可控空间定位的蛋黄壳金属有机框架[93], (d) MIL-101(Fe)[94]内制备催化剂
Fig. 6 The catalyst is prepared by packing metal nanoparticles into (a) UiO-66[91] (Copyright 2022, American Chemical Society), (b) silicalite-1 framework[92] (Copyright 2022, Elsevier), (c) in Yolk-Shell MOFs[93] (Copyright 2020, Wiley-VCH Verlag), (d) MIL-101(Fe)[94] (Copyright 2022, Elsevier)
图7 使用(a) HCOOH[114], (b) 异丙醇[115], (c) 氨硼烷[116],(d) 氨硼烷[117], (e) 乙醇[118], (f) iPrOH和EtOH[119]作为氢源进行加氢反应
Fig. 7 Hydrogenation was performed using (a) HCOOH[114] (Copyright 2019, American Chemical Society), (b) isopropyl alcohol[115] (Copyright 2017, Science Press), (c) aminoborane[116] (Copyright 2020, Wiley-VCH Verlag), (d) aminoborane[117] (Copyright 2022, Elsevier), (e) ethanol[118] (Copyright 2020, American Chemical Society), (f) iPrOH and EtOH[119] (Copyright 2018, Wiley-VCH), as hydrogen sources
图8 在(a) 甲醇[121], (b) 2-丙醇[123], (c) 不同分子大小的醇溶剂[124], (d) 水[72]中的选择性加氢反应
Fig. 8 Selective hydrogenation of (a) methanol[121] (Copyright 2018, Elsevier Masson), (b) 2-propanol[123] (Copyright 2021, Elsevier Science), (c) alcohols with different molecular sizes[124] (Copyright 2018, American Chemical Society), and (d) water[72] (Copyright 2020, American Chemical Society)
图9 (a) 肉桂醛和肉桂醇产率在Au25/ZnAl-300催化剂上的时间变化过程[106]; (b) 反应时间对于Ni-C-600上选择性和转化率的影响[144]
Fig. 9 (a) Time courses of the yield of cinnamaldehyde and cinnamyl alcohol over the Au25/ZnAl-300 catalyst[106] (Copyright 2021, Elsevier B.V); (b) the effect of reaction time on the conversion of CAL and selectivity to products on Ni-C-600[144] (Copyright 2022, Springer US)
图10 不饱和醛以Horiuti-Polyani机制进行依次加氢[9]
Fig. 10 Horiuti-Polyani mechanism for the hydrogenation of the unsaturated aldehyde, in which one H atom is added in each step[9]. (Copyright 2020, American Chemical Society)
图11 巴豆醛在铂表面加氢的机理以及随着反应物压力的增加选择性趋势的变化,即从饱和醇转向不饱和醛[158]
Fig. 11 The hydrogenation of crotonaldehyde on Pt surfaces to account for the trends seen in selectivity with increasing reactant pressure, namely, a shift from the saturated alcohol to the unsaturated aldehyde[158]. (Copyright 2018, American Chemical Society)
图12 在(a) 3Ir/BN和(b) 3Ir-0.05Fe/BN催化剂上生成辛基醇的反应路线[148]
Fig. 12 Reaction route for the formation of octylalcohol over (a) 3Ir/BN and (b) 3Ir-0.05Fe/BN catalysts[148]. (Copyright 2019, Elsevier)
[1]
Zhao M T, Yuan K, Wang Y, Li G D, Guo J, Gu L, Hu W P, Zhao H J, Tang Z Y. Nature, 2016, 539(7627): 76.

doi: 10.1038/nature19763    
[2]
Ke J X, Xiao L Y, Yu G X, Wu H J, Shen G H, Zhang Z Q. Int. J. Biol. Macromol., 2019, 125: 642.

doi: 10.1016/j.ijbiomac.2018.12.094     URL    
[3]
Sun D L, Yamada Y, Sato S, Ueda W. Green Chem., 2017, 19(14): 3186.

doi: 10.1039/C7GC00358G     URL    
[4]
Hidalgo-Carrillo J, Sebti J, Marinas A, Marinas J M, Sebti S, Urbano F J. J. Colloid Interface Sci., 2012, 382(1): 67.

doi: 10.1016/j.jcis.2012.05.050     URL    
[5]
Golmakani M T, Tahsiri Z, Alavi N. Int. J. Food Prop., 2018, 21(1): 2660.
[6]
Radhika G R, Raoul B, Mark T G, Pei L, Thomas W Hansen, Kathleen S D, David D H, Jean P T. ACS Catal., 2022, 12(12): 7344.

doi: 10.1021/acscatal.2c01063     URL    
[7]
Alfilfil L, Ran J S, Chen C L, Dong X L, Wang J J, Han Y. Microporous Mesoporous Mater., 2022, 330: 111566.

doi: 10.1016/j.micromeso.2021.111566     URL    
[8]
Wang G H, Deng X H, Gu D, Chen K, Tüysüz H, Spliethoff B, Bongard H J, Weidenthaler C, Schmidt W, Schüth F. Angew. Chem. Int. Ed., 2016, 55(37): 11101.

doi: 10.1002/anie.v55.37     URL    
[9]
Luneau M, Lim J S, Patel D A, Sykes E C H, Friend C M, Sautet P. Chem. Rev., 2020, 120(23): 12834.

doi: 10.1021/acs.chemrev.0c00582     URL    
[10]
Han Q, Liu Y F, Wang D, Yuan F L, Niu X Y, Zhu Y J. RSC Adv., 2016, 6(100): 98356.

doi: 10.1039/C6RA17979G     URL    
[11]
Hu D, Fan W Q, Liu Z, Li L. ChemCatChem, 2018, 10(4): 779.

doi: 10.1002/cctc.v10.4     URL    
[12]
Nongwe I, Ravat V, Meijboom R, Coville N J. Appl. Catal. A Gen., 2016, 517: 30.

doi: 10.1016/j.apcata.2016.02.025     URL    
[13]
Yu H T, Xu Y, Havener K, Zhang L, Wu W J, Liao X J, Huang K. Mol. Catal., 2022, 525: 112343.
[14]
Tian F P, Zhang M J, Zhang X C, Chen X, Wang J L, Zhang Y F, Meng C G, Liang C H. J. Mater. Sci., 2022, 57(5): 3168.

doi: 10.1007/s10853-021-06796-z    
[15]
Steffan M, Klasovsky F, Arras J, Roth C, Radnik J, Hofmeister H, Claus P. Adv. Synth. Catal., 2008, 350(9): 1337.

doi: 10.1002/adsc.v350:9     URL    
[16]
Vilella I M J, de Miguel S R, de Lecea C S M, Linares-Solano Á, Scelza O A. Appl. Catal. A Gen., 2005, 281(1-2): 247.

doi: 10.1016/j.apcata.2004.10.019     URL    
[17]
Li L, Gao G, Zheng J, Shi X, Liu Z. Diam. Relat. Mater., 2019, 91: 272.

doi: 10.1016/j.diamond.2018.12.018     URL    
[18]
Nagpure A S, Gogoi P, Chilukuri S V. Chem., 2021, 16(18): 2702.
[19]
Shaikh M N, Abdelnaby M M, Hakeem A S, Nasser G A, Yamani Z H. ACS Appl. Nano Mater., 2021, 4(4): 3508.

doi: 10.1021/acsanm.1c00007     URL    
[20]
Nie R F, Miao M, Du W C, Shi J J, Liu Y C, Hou Z Y. Appl. Catal. B Environ., 2016, 180: 607.

doi: 10.1016/j.apcatb.2015.07.015     URL    
[21]
Nagpure A S, Gurrala L, Gogoi P, Chilukuri S V. RSC Adv., 2016, 6(50): 44333.

doi: 10.1039/C6RA04154J     URL    
[22]
Xu Z X, Duong-Viet C, Liu Y F, Baaziz W, Li B, Nguyen-Dinh L, Ersen O, Pham-Huu C. Appl. Catal. B Environ., 2019, 244: 128.

doi: 10.1016/j.apcatb.2018.11.041     URL    
[23]
Xue B, Xu T C, Li D S, Xu J, Li Y X, Wang F, Zhu J. Catal. Sci. Technol., 2020, 10(4): 1096.

doi: 10.1039/C9CY02002K     URL    
[24]
Zhu J, Dou M D, Lu M H, Xiang X, Ding X J, Liu W X, Li M S. Appl. Catal. A Gen., 2019, 575: 11.

doi: 10.1016/j.apcata.2019.02.009     URL    
[25]
Chen S J, Meng L, Chen B X, Chen W Y, Duan X Z, Huang X, Zhang B S, Fu H B, Wan Y. ACS Catal., 2017, 7(3): 2074.

doi: 10.1021/acscatal.6b02720     URL    
[26]
Wang X X, Zheng H Y, Liu X J, Xie G Q, Lu J Q, Jin L Y, Luo M F. Appl. Catal. A Gen., 2010, 388(1/2): 134.

doi: 10.1016/j.apcata.2010.08.044     URL    
[27]
Chiu M E, Watson D J, Kyriakou G, Tikhov M S, Lambert R M. Angew. Chem. Int. Ed., 2006, 45(45): 7530.

doi: 10.1002/anie.v45:45     URL    
[28]
Chiu M E, Kyriakou G, Williams F J, Watson D J, Tikhov M S, Lambert R M. Chem. Commun., 2006, (12): 1283.
[29]
Abid M, Touroude R. Catal. Lett., 2000, 69: 139.

doi: 10.1023/A:1019090411031     URL    
[30]
Dai Y H, Gao X, Chu X F, Jiang C Y, Yao Y, Guo Z, Zhou C M, Wang C, Wang H M, Yang Y H. J. Catal., 2018, 364: 192.

doi: 10.1016/j.jcat.2018.05.008     URL    
[31]
Lin W, Cheng H, Li X, Zhang C, Zhao F, Arai M. Chinese J. Catal., 2018, 395:988.
(林伟伟, 程海洋, 李小汝, 张弨, 赵凤玉, 荒井正彦. 催化学报, 2018, 39:988.)
[32]
Wang X F, He Y F, Liu Y Z, Park J, Liang X H. J. Catal., 2018, 366: 61.

doi: 10.1016/j.jcat.2018.07.031     URL    
[33]
Merlo A B, Machado B F, Vetere V, Faria J L, Casella M L. Appl. Catal. A Gen., 2010, 383(1-2): 43.

doi: 10.1016/j.apcata.2010.05.046     URL    
[34]
Hui T L, Miao C L, Feng J T, Liu Y N, Wang Q, Wang Y F, Li D Q. J. Catal., 2020, 389: 229.

doi: 10.1016/j.jcat.2020.05.036     URL    
[35]
Wang H P, Bai S X, Pi Y C, Shao Q, Tan Y M, Huang X Q. ACS Catal., 2019, 9(1): 154.

doi: 10.1021/acscatal.8b03471     URL    
[36]
Gu Z Z, Chen L Y, Li X Z, Chen L, Zhang Y Y, Duan C Y. Chem. Sci., 2019, 10(7): 2111.

doi: 10.1039/C8SC05450A     URL    
[37]
Li X J, Zhang S F, Zhu L H, Liu J, Zhang H, Zhao N, Chen B H. Mater. Chem. Phys., 2023, 294: 127003.

doi: 10.1016/j.matchemphys.2022.127003     URL    
[38]
Wang G M, Xin H Y, Wang Q X, Wu P, Li X H. J. Catal., 2020, 382: 1.

doi: 10.1016/j.jcat.2019.12.004     URL    
[39]
Wang L W, Han R R, Ma Y F, Duyar M S, Liu W, Liu J. J. Phys. Chem. C, 2021, 125(41): 22603.

doi: 10.1021/acs.jpcc.1c07693     URL    
[40]
Zhang W B, Xin H Y, Zhang Y Q, Jin X, Wu P, Xie W H, Li X H. J. Catal., 2021, 395: 375.

doi: 10.1016/j.jcat.2021.01.034     URL    
[41]
Tian Z B, Liu C, Li Q Y, Hou J Y, Li Y, Ai S Y. Appl. Catal. A Gen., 2015, 506: 134.

doi: 10.1016/j.apcata.2015.08.023     URL    
[42]
Su J F, Shi W, Liu X C, Zhang L Y, Cheng S B, Zhang Y, Botton G A, Zhang B S. J. Catal., 2020, 388: 164.

doi: 10.1016/j.jcat.2020.05.015     URL    
[43]
Zhu M W, Huang B, Shao Q, Pi Y C, Qian Y, Huang X Q. ChemCatChem, 2018, 10(15): 3214.

doi: 10.1002/cctc.v10.15     URL    
[44]
Dai L X, Zhu W, Lin M, Zhang Z P, Gu J, Wang Y H, Zhang Y W. Inorg. Chem. Front., 2015, 2(10): 949.

doi: 10.1039/C5QI00129C     URL    
[45]
Wang Q X, Wang G M, Xin H Y, Liu J X, Xiong G, Wu P, Li X H. Catal. Sci. Technol., 2019, 9(12): 3226.

doi: 10.1039/C9CY00755E     URL    
[46]
Zhang N, Shao Q, Wang P T, Zhu X, Huang X Q. Small, 2018, 14(19): 1704318.

doi: 10.1002/smll.v14.19     URL    
[47]
Wang P, Shao Q, Cui X, Zhu X, Huang X. Adv. Funct. Mater., 2018, 28: 1705918.

doi: 10.1002/adfm.v28.5     URL    
[48]
Wang X F, Liang X H, Geng P, Li Q B. ACS Catal., 2020, 10(4): 2395.

doi: 10.1021/acscatal.9b05031     URL    
Wang X F, Liang X H, Geng P, Li Q B. ACS Catal., 2020, 10(4): 2395.

doi: 10.1021/acscatal.9b05031     URL    
[49]
Cattaneo S, Freakley S J, Morgan D J, Sankar M, Dimitratos N, Hutchings G J. Catal. Sci. Technol., 2018, 8(6): 1677.

doi: 10.1039/C7CY02556D     URL    
Cattaneo S, Freakley S J, Morgan D J, Sankar M, Dimitratos N, Hutchings G J. Catal. Sci. Technol., 2018, 8(6): 1677.

doi: 10.1039/C7CY02556D     URL    
[50]
Li R R, Yao W B, Jin Y X, Jia W P, Chen X Y, Chen J J, Zheng J L, Hu Y, Han D M, Zhao J. Chem. Eng. J., 2018, 351: 995.

doi: 10.1016/j.cej.2018.06.146     URL    
[51]
Ma Y, Feng L, Guo Z L, Deng J T, Pham-Huu C, Liu Y F. Front. Chem., 2019, 7: 751.

doi: 10.3389/fchem.2019.00751     URL    
[52]
Li P H, Wang Y Y, Wang Y W, Jin G Q, Guo X Y, Tong X L. Chin. J. Chem., 2020, 38(4): 367.

doi: 10.1002/cjoc.v38.4     URL    
[53]
Dai Y H, Chu X F, Gu J J, Gao X, Xu M, Lu D, Wan X Y, Qi W, Zhang B S, Yang Y H. Appl. Catal. A Gen., 2019, 582: 117098.

doi: 10.1016/j.apcata.2019.05.032     URL    
[54]
Rana S, Jonnalagadda S B. RSC Adv., 2017, 7(5): 2869.

doi: 10.1039/C6RA26443C     URL    
[55]
Yang Y S, Rao D M, Chen Y D, Dong S Y, Wang B, Zhang X, Wei M. ACS Catal., 2018, 8(12): 11749.

doi: 10.1021/acscatal.8b02755     URL    
[56]
Mohire S S, Yadav G D. Ind. Eng. Chem. Res., 2018, 57(28): 9083.

doi: 10.1021/acs.iecr.8b00957     URL    
[57]
Prakash M G, Mahalakshmy R, Krishnamurthy K R, Viswanathan B. Catal. Today, 2016, 263: 105.

doi: 10.1016/j.cattod.2015.09.053     URL    
[58]
Wei S P, Zhao Y T, Fan G L, Yang L, Li F. Chem. Eng. J., 2017, 322: 234.

doi: 10.1016/j.cej.2017.04.026     URL    
[59]
Weng Z H, Zaera F. ACS Catal., 2018, 8(9): 8513.

doi: 10.1021/acscatal.8b02431     URL    
[60]
Zahid M, Li J, Ismail A, Zaera F, Zhu Y J. Catal. Sci. Technol., 2021, 11(7): 2433.

doi: 10.1039/D0CY02082F     URL    
[61]
Mo M, Tang J S, Zou L J, Xun Y Y, Guan H R. RSC Adv., 2022, 12(51): 33099.

doi: 10.1039/D2RA05595C     URL    
[62]
Hidalgo-Carrillo J, Aramendía M A, Marinas A, Marinas J M, Urbano F J. Appl. Catal. A Gen., 2010, 385(1-2): 190.

doi: 10.1016/j.apcata.2010.06.049     URL    
[63]
Wei Z J, Zhu X M, Liu X S, Xu H Q, Li X H, Hou Y X, Liu Y X. Chin. J. Chem. Eng., 2019, 27(2): 369.

doi: 10.1016/j.cjche.2018.04.022     URL    
[64]
Cao Y Q, Chen B, Guerrero-Sánchez J, Lee I, Zhou X G, Takeuchi N, Zaera F. ACS Catal., 2019, 9(10): 9150.

doi: 10.1021/acscatal.9b02547     URL    
[65]
Liu Y C, Wang X C, Zhang C, Xu Q, Dang L L, Zhao X, Tan H Q, Li Y G, Zhao F Y. New J. Chem., 2022, 46(33): 15950.

doi: 10.1039/D2NJ02497G     URL    
[66]
Tamura M, Tokonami K, Nakagawa Y, Tomishige K. Chem. Commun., 2013, 49(63): 7034.

doi: 10.1039/c3cc41526k     URL    
[67]
Martinez J, Rojas H, Castaneda C, Diaz G, Gomez-Cortes A, Arenas-Alatorre J. Curr. Org. Chem., 2012, 16(23): 2791.

doi: 10.2174/138527212804546877     URL    
[68]
Zhao J, Ni J, Xu J H, Xu J T, Cen J, Li X N. Catal. Commun., 2014, 54: 72.

doi: 10.1016/j.catcom.2014.05.012     URL    
[69]
Lin W W, Cheng H Y, He L M, Yu Y C, Zhao F Y. J. Catal., 2013, 303: 110.

doi: 10.1016/j.jcat.2013.03.002     URL    
[70]
Zhao J B, Yuan H F, Gui Y H, Li X M, Qin X M, Wei C Z, Liu Y F, Wang G Q, Zhou L M, Fang S M. J. Mater. Sci., 2021, 56(9): 5760.

doi: 10.1007/s10853-020-05634-y    
[71]
Yu J, Yang Y S, Wei M. Acta Chim. Sinica, 2019, 77, 1129.

doi: 10.6023/A19070260     URL    
[72]
Gao X, Dai H, Peng L L, Lu D, Wan X Y, Zhou C M, Zheng J W, Dai Y H, Wang H M, Yang Y H. ACS Appl. Mater. Interfaces, 2020, 12(2): 2516.

doi: 10.1021/acsami.9b19160     URL    
[73]
Gao Z X, Cai L Y, Miao C L, Hui T L, Wang Q, Li D Q, Feng J T. ChemCatChem, 2022, 14(18): e202200634.

doi: 10.1002/cctc.v14.18     URL    
[74]
Mateen M, Akhtar M N, Gao L, Cheong W C M, Lv S S, Zhou Y, Chen Z. Nano Res., 2022, 15(8): 7107.

doi: 10.1007/s12274-022-4405-4    
[75]
He S N, Xie L F, Che M W, Chan H C, Yang L C, Shi Z P, Tang Y, Gao Q S. J. Mol. Catal. A Chem., 2016, 425: 248.

doi: 10.1016/j.molcata.2016.10.016     URL    
[76]
Zhang R, Wang L C, Ren J Z, Hu C C, Lv B L. J. Colloid Interface Sci., 2023, 630: 549.

doi: 10.1016/j.jcis.2022.10.117     URL    
[77]
Li Z J, Wei W, Li H H, Li S H, Leng L P, Zhang M Y, Horton J H, Wang D S, Sun W W, Guo C M, Wu W, Wang J. ACS Nano, 2021, 15(6): 10175.

doi: 10.1021/acsnano.1c02094     URL    
[78]
Zhang R, Wang L C, Yang X, Tao Z, Ren X B, Lv B L. Appl. Surf. Sci., 2019, 492: 736.

doi: 10.1016/j.apsusc.2019.06.269     URL    
[79]
Kato S, Ohyama J, Machida M, Satsuma A. Catal. Sci. Technol., 2019, 9(9): 2097.

doi: 10.1039/C9CY00158A     URL    
[80]
Hu Q M, Wang S, Gao Z, Li Y Q, Zhang Q, Xiang Q, Qin Y. Appl. Catal. B Environ., 2017, 218: 591.

doi: 10.1016/j.apcatb.2017.06.087     URL    
[81]
Cui R Q, Zhou J Q, Wang D, Zhao Y F, Xiang X, Shang H S, Zhang B. Dalton Trans., 2023, 52(11): 3325.

doi: 10.1039/D2DT03600B     URL    
[82]
Xin H Y, Zhang W B, Xiao X X, Chen L, Wu P, Li X H. J. Catal., 2021, 393: 126.

doi: 10.1016/j.jcat.2020.11.036     URL    
[83]
Peres L, Axet M R, Yi D L, Serp P, Soulantica K. Catal. Today, 2020, 357: 166.

doi: 10.1016/j.cattod.2019.05.048     URL    
[84]
Jiang F, Cai J, Liu B, Xu Y B, Liu X H. RSC Adv., 2016, 6(79): 75541.

doi: 10.1039/C6RA17000E     URL    
[85]
Yin D, Ren H, Li C, Liu J, Liang C. Chinese J. Catal., 2018, 392, 319.
[86]
Manyar H G, Yang B, Daly H, Moor H, McMonagle S, Tao Y, Yadav G D, Goguet A, Hu P, Hardacre C. ChemCatChem, 2013, 5(2): 506.

doi: 10.1002/cctc.v5.2     URL    
[87]
O’Brien C P, Dostert K H, Schauermann S, Freund H J. Chem., 2016, 22(44): 15856.
[88]
Wang F, Bi Y S, Hu K, Wei X J. Chem., 2020, 26(21): 4874.
[89]
Wang F, Zhang Z N, Wei X J, Fang Q H, Jiang X M. Appl. Catal. A Gen., 2017, 543: 196.

doi: 10.1016/j.apcata.2017.06.039     URL    
[90]
Aydin C, Lu J, Browning N D, Gates B C. Angew. Chem. Int. Ed., 2012, 51(24): 5929.

doi: 10.1002/anie.v51.24     URL    
[91]
Guo M Y, Du Y Z, Zhang M W, Wang L, Zhang X W, Li G Z. ACS Sustainable Chem. Eng., 2022, 10(23): 7485.

doi: 10.1021/acssuschemeng.2c00098     URL    
[92]
Liu C, Zhu P, Wang J S, Liu H O, Zhang X F. Chem. Eng. J., 2022, 446: 137064.

doi: 10.1016/j.cej.2022.137064     URL    
[93]
Zhou A W, Dou Y B, Zhou J, Li J R. ChemSusChem, 2020, 13(1): 205.

doi: 10.1002/cssc.v13.1     URL    
[94]
Liu Q L, Liu Q, Chen Y R, Li Y L, Su H, Liu Q H, Li G Q. Chin. Chemical Lett., 2022, 33(1): 374.

doi: 10.1016/j.cclet.2021.06.047     URL    
[95]
Geng R Y, Jia H H, Xie Y W, Pan D H, Yu F, Fan B B. Microporous Mesoporous Mater., 2022, 338: 111968.

doi: 10.1016/j.micromeso.2022.111968     URL    
[96]
Yuan K, Song T Q, Wang D W, Zhang X T, Gao X, Zou Y, Dong H L, Tang Z Y, Hu W P. Angew. Chem. Int. Ed., 2018, 57(20): 5708.

doi: 10.1002/anie.v57.20     URL    
[97]
Liu Q L, Li Y L, Fan Y N, Su C Y, Li G Q. J. Mater. Chem. A, 2020, 8(22): 11442.

doi: 10.1039/D0TA01845G     URL    
[98]
Zhang B Z, Li M Y, Lei H J, Chen J L, Wang S H, Chen C. Appl. Surf. Sci., 2022, 599: 153899.

doi: 10.1016/j.apsusc.2022.153899     URL    
[99]
Lan X C, Wang T F, Li X D, Huang N, Wang J F. Catal. Sci. Technol., 2016, 6(21): 7703.

doi: 10.1039/C6CY01600F     URL    
[100]
Patil K N, Manikanta P, Srinivasappa P M, Jadhav A H, Nagaraja B M. J. Environ. Chem. Eng., 2022, 10(5): 108208.

doi: 10.1016/j.jece.2022.108208     URL    
[101]
Cui H S, Liu S H, Lv Y, Wu S T, Wang L P, Hao F, Liu P L, Xiong W, Luo H A. J. Catal., 2020, 381: 468.

doi: 10.1016/j.jcat.2019.11.024     URL    
[102]
Tao R, Shan B Q, Sun H D, Ding M, Xue Q S, Jiang J G, Wu P, Zhang K. J. Phys. Chem. C, 2021, 125(24): 13304.

doi: 10.1021/acs.jpcc.1c03026     URL    
[103]
Zahid M, Ismail A, Sohail M, Zhu Y J. J. Colloid Interface Sci., 2022, 628: 141.

doi: 10.1016/j.jcis.2022.08.067     URL    
[104]
Vu K B, Bukhryakov K V, Anjum D H, Rodionov V O. ACS Catal., 2015, 5(4): 2529.

doi: 10.1021/acscatal.5b00262     URL    
[105]
Sole R, Buranello C, Bardella N, Di Michele A, Paganelli S, Beghetto V. Catalysts, 2021, 11(8): 914.

doi: 10.3390/catal11080914     URL    
[106]
Tan Y, Liu X Y, Zhang L L, Liu F, Wang A Q, Zhang T. Chin. J. Catal., 2021, 42(3): 470.
[107]
Ye Y W, Hu Y M, Zheng W B, Jia A P, Wang Y, Lu J Q. Chin. J. Catal., 2023, 47: 265.
[108]
Schröder C, Baumann A K, Schmidt M C, Smyczek J, Haugg P A, Graap O C, Schauermann S. J. Phys. Chem. C, 2022, 126(10): 4907.

doi: 10.1021/acs.jpcc.2c00987     URL    
[109]
Farrag M. Microporous Mesoporous Mater., 2018, 257: 110.

doi: 10.1016/j.micromeso.2017.08.022     URL    
[110]
Murata K, Ogura K, Ohyama J, Sawabe K, Yamamoto Y, Arai S, Satsuma A. ACS Appl. Mater. Interfaces, 2020, 12(23): 26002.

doi: 10.1021/acsami.0c05938     URL    
[111]
Zhang Y B, Ettelaie R, Binks B P, Yang H Q. ACS Catal., 2021, 11(3): 1485.

doi: 10.1021/acscatal.0c04604     URL    
[112]
Yamada H, Fujimura M, Goto S. J. Alloys Compd., 2004, 375(1-2): 202.

doi: 10.1016/j.jallcom.2003.11.154     URL    
[113]
Siddqui N, Sarkar B, Pendem C, Khatun R, Sivakumar Konthala L N, Sasaki T, Bordoloi A, Bal R. Catal. Sci. Technol., 2017, 7(13): 2828.

doi: 10.1039/C7CY00989E     URL    
[114]
Luo N H, Liao J H, Ouyang L, Wen H L, Liu J T, Tang W P, Luo R S. Organometallics, 2019, 38(15): 3025.

doi: 10.1021/acs.organomet.9b00353     URL    
[115]
Cai W M, Yang J, Sun H F, Wang Y B, Ling T, Guo X F, Peng L M, Ding W P. Chin. J. Catal., 2017, 38(8): 1330.
[116]
Zhou Y Y, Li Z H, Liu Y B, Huo J, Chen C, Li Q L, Niu S Y, Wang S Y. ChemSusChem, 2020, 13(7): 1746.

doi: 10.1002/cssc.v13.7     URL    
[117]
Zhou Y Y, Chen C, Li Q L, Liu Y B, Wei T, Liu Y Z, Zeng Z B, Bradshaw D, Zhang B, Huo J. Appl. Catal. B Environ., 2022, 311: 121348.

doi: 10.1016/j.apcatb.2022.121348     URL    
[118]
Wang H J, Liu B Y, Liu F, Wang Y N, Lan X C, Wang S Q, Ali B, Wang T F. ACS Sustainable Chem. Eng., 2020, 8(22): 8195.

doi: 10.1021/acssuschemeng.0c00942     URL    
[119]
Farrar-Tobar R A, Wei Z H, Jiao H J, Hinze S, De Vries J G. Chem., 2018, 24(11): 2725.
[120]
Li Y, Cheng H Y, Lin W W, Zhang C, Wu Q F, Zhao F Y, Arai M. Catal. Sci. Technol., 2018, 8(14): 3580.

doi: 10.1039/C8CY00943K     URL    
[121]
Leng F Q, Gerber I C, Axet M R, Serp P. Comptes Rendus Chim., 2017, 21(3/4): 346.

doi: 10.1016/j.crci.2017.04.001     URL    
[122]
Daimon A, Kamitanaka T, Kishida N, Matsuda T, Harada T. J. Supercrit. Fluids, 2006, 37(2): 215.

doi: 10.1016/j.supflu.2005.09.001     URL    
[123]
Chen Y Q, Liu W, Yin P, Ju M H, Wang J, Yang W Y, Yang Y S, Shen C. J. Catal., 2021, 393: 1.

doi: 10.1016/j.jcat.2020.11.019     URL    
[124]
Deng Y C, Gao R, Lin L L, Liu T, Wen X D, Wang S, Ma D. J. Am. Chem. Soc., 2018, 140(43): 14481.

doi: 10.1021/jacs.8b09310     URL    
[125]
Wang J, Lv C Q, Liu J H, Ren R R, Wang G C. Int. J. Hydrog. Energy, 2021, 46(2): 1592.
[126]
Joubert J, Delbecq F. Organometallics, 2006, 25(4): 854.

doi: 10.1021/om050782a     URL    
[127]
Lv Y, Han M M, Gong W B, Wang D D, Chen C, Wang G Z, Zhang H M, Zhao H J. Angew. Chem. Int. Ed., 2020, 59(52): 23521.

doi: 10.1002/anie.v59.52     URL    
[128]
Li W J, Wang Y H, Chen P, Zeng M, Jiang J Y, Jin Z L. Catal. Sci. Technol., 2016, 6(20): 7386.

doi: 10.1039/C6CY01137C     URL    
[129]
Guo H, Li Y C, Zuo C C, Zheng Y X, Guo X P, Hao J G, Huang H F, Wang M, Ge T T. AlChE. J., 2022, 68(7): e17683.

doi: 10.1002/aic.v68.7     URL    
[130]
Xin H Y, Li M N, Chen L, Zhao C, Wu P, Li X H. Catal. Sci. Technol., 2023, 13(5): 1488.

doi: 10.1039/D2CY01868C     URL    
[131]
Engelhardt C M, Kennedy R M, Enterkin J A, Poeppelmeier K R, Ellis D E, Marshall C L, Stair P C. ChemCatChem, 2018, 10(3): 632.

doi: 10.1002/cctc.v10.3     URL    
[132]
Loffreda D, Delbecq F, Vigné F, Sautet P. Angew. Chem. Int. Ed., 2005, 44(33): 5279.

doi: 10.1002/anie.v44:33     URL    
[133]
Tuokko S, Pihko P M, Honkala K. Angew. Chem. Int. Ed., 2016, 55(5): 1670.

doi: 10.1002/anie.v55.5     URL    
[134]
Murillo L E, Menning C A, Chen J G. J. Catal., 2009, 268(2): 335.

doi: 10.1016/j.jcat.2009.10.003     URL    
[135]
Liu Q L, Wu J Y, Kang J W, Liu Q, Liao P S, Li G Q. Nanoscale, 2022, 14(41): 15462.

doi: 10.1039/D2NR03608H     URL    
[136]
Jiang J, Xia S, Ni Z, Zhang L. Chem. J. Chinese U., 2016, 374: 693.
(蒋军辉, 夏盛杰, 倪哲明, 张连阳. 高等学校化学学报, 2016, 374:693.)
[137]
Cao Y, Jiang J, Ni Z, Xia S, Qian M, Xue J. Chem. J. Chinese U., 2016, 377:1342.
(曹勇勇, 蒋军辉, 倪哲明, 夏盛杰, 钱梦丹, 薛继龙. 高等学校化学学报, 2016, 377: 1342.)
[138]
Chang S S, Meng S G, Fu X L, Zhang S J, Zheng X Z, Chen S F. Chemistry Select, 2019, 4(7): 2018.
[139]
Li L C, Wang W, Wang X L, Zhang L. J. Mol. Model., 2016, 22(8): 186.

doi: 10.1007/s00894-016-3039-4     URL    
[140]
Li L C, Wei W, Wang W, Wang X L, Zhang L, Tian A M. RSC Adv., 2016, 6(91): 88277.

doi: 10.1039/C6RA16150B     URL    
[141]
Yang X F, Wang A Q, Wang X D, Zhang T, Han K L, Li J. J. Phys. Chem. C, 2009, 113(49): 20918.

doi: 10.1021/jp905687g     URL    
[142]
Delbecq F, Sautet P. J. Catal., 2003, 220:115.

doi: 10.1016/S0021-9517(03)00249-5     URL    
[143]
Jiang Z F, Wan W M, Lin Z X, Xie J M, Chen J G. ACS Catal., 2017, 7(9): 5758.

doi: 10.1021/acscatal.7b01682     URL    
[144]
Komal N P, Manikanta P, Puneethkumar M S, Arvind H J, Bhari M N. J. Environ. Chem. Eng., 2023, 11(1): 109168.

doi: 10.1016/j.jece.2022.109168     URL    
[145]
Liu W, Jiang Y D, Dostert K H, O’Brien C P, Riedel W, Savara A, Schauermann S, Tkatchenko A. Sci. Adv., 2017, 3(7): e1700939.

doi: 10.1126/sciadv.1700939     URL    
[146]
Khan M, Joshi S, Ranade V. Chem. Eng. J., 2019, 377: 120512.

doi: 10.1016/j.cej.2018.11.210     URL    
[147]
Wang K L, Yang B.. Catal. Sci. Technol., 2017, 7: 4024.

doi: 10.1039/C7CY01500C     URL    
[148]
Ning X, Xu Y M, Wu A Q, Tang C, Jia A P, Luo M F, Lu J Q. Appl. Surf. Sci., 2019, 463: 463.

doi: 10.1016/j.apsusc.2018.08.230     URL    
[149]
Mäki-Arvela P, Denecheau A, Alho K, Wärnå J, Eränen K R, Salmi T, Murzin D Y. Chem. Eng. J., 2007, 134(1-3): 268.

doi: 10.1016/j.cej.2007.03.034     URL    
[150]
Kyriakou G, Boucher M B, Jewell A D, Lewis E A, Lawton T J, Baber A E, Tierney H L, Flytzani-Stephanopoulos M, Sykes E C H. Science, 2012, 335(6073): 1209.

doi: 10.1126/science.1215864     URL    
[151]
Cao Y Q, Guerrero-Sańchez J, Lee I, Zhou X G, Takeuchi N, Zaera F. ACS Catal., 2020, 10(5): 3431.

doi: 10.1021/acscatal.9b05407     URL    
[152]
Luo Q Q, Wang T, Beller M, Jiao H J. J. Phys. Chem. C, 2013, 117(24): 12715.

doi: 10.1021/jp403972b     URL    
[153]
Ji X W, Niu X Y, Li B, Han Q, Yuan F L, Zaera F, Zhu Y J, Fu H G. ChemCatChem, 2014, 6(11): 3246.

doi: 10.1002/cctc.v6.11     URL    
[154]
Zhang Y, Chen C, Gong W B, Song J Y, Su Y P, Zhang H M, Wang G Z, Zhao H J. RSC Adv., 2017, 7(34): 21107.

doi: 10.1039/C7RA02898A     URL    
[155]
Breen J P, Burch R, Gomez-Lopez J, Griffin K, Hayes M. Appl. Catal., A., 2004, 268: 267.

doi: 10.1016/j.apcata.2004.04.002     URL    
[156]
Wang D, Zhu Y J, Tian C G, Wang L, Zhou W, Dong Y L, Yan H J, Fu H G. ChemCatChem, 2016, 8(9): 1718.

doi: 10.1002/cctc.v8.9     URL    
[157]
Zhang W L, Shi W X, Ji W L, Wu H B, Gu Z D, Wang P, Li X H, Qin P S, Zhang J, Fan Y, Wu T Y, Fu Y, Zhang W N, Huo F W. ACS Catal., 2020, 10(10): 5805.

doi: 10.1021/acscatal.0c00682     URL    
[158]
Dong Y, Zaera F. J. Phys. Chem. Lett., 2018, 9(6): 1301.

doi: 10.1021/acs.jpclett.8b00173     URL    
[159]
Lan X C, Wang T F. ACS Catal., 2020, 10(4): 2764.

doi: 10.1021/acscatal.9b04331     URL    
[1] 张文博, 王佳宁, 卫林峰, 金花, 鲍艳, 马建中. 功能型聚合物基电磁屏蔽材料的制备及应用[J]. 化学进展, 2023, 35(7): 1065-1076.
[2] 王海, 王成涛, 周航, 王亮, 肖丰收. 小分子催化转化中的凝聚态化学[J]. 化学进展, 2023, 35(6): 861-885.
[3] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[4] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[5] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[6] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[7] 裴强, 丁爱祥. 四重氢键自组装体系的设计与应用[J]. 化学进展, 2019, 31(2/3): 258-274.
[8] 闫新, 李意羡, 贾月梅, 俞初一. 糖苷化的亚氨基糖:分离、合成与生物活性[J]. 化学进展, 2019, 31(11): 1472-1508.
[9] 李意羡, 贾月梅, 俞初一. 氟代亚氨基糖的合成与糖苷酶抑制活性[J]. 化学进展, 2018, 30(5): 586-600.
[10] 朱燕燕, 岳宗洋, 边文, 刘瑞林, 马晓迅, 王晓东. 六铝酸盐结构及其在高温反应中的应用[J]. 化学进展, 2018, 30(12): 1992-2002.
[11] 代天志, 孙德群. 抗TB活性化合物的研究[J]. 化学进展, 2018, 30(11): 1784-1802.
[12] 彭立山, 魏子栋*. 高性能电解水电极催化材料的设计及产品工程[J]. 化学进展, 2018, 30(1): 14-28.
[13] 刘如沁, 索志荣, 何乃珍, 陈爽, 黄明. 偶氮桥联二呋咱:合成及其分子结构-熔点的构效关系[J]. 化学进展, 2017, 29(5): 476-490.
[14] 邓南平, 马晓敏, 阮艳莉, 王晓清, 康卫民, 程博闻. 锂硫电池系统研究与展望[J]. 化学进展, 2016, 28(9): 1435-1454.
[15] 胡代花, 陈旺, 王永吉. 活性维生素D3类似物的合成及构效关系研究[J]. 化学进展, 2016, 28(6): 839-859.